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Abstract:  16 

Under the background of global climate change and local anthropogenic activities, multiple 17 

driving forces have introduced a variety of non-stationary components into low-flow series. This 18 

has led to a high demand on low-flow frequency analysis that considers nonstationary conditions 19 

for modeling. In this study, a nonstationary framework of low-flow frequency analysis has been 20 

developed on basis of the Generalized Linear Model (GLM) to consider time-varying distribution 21 

parameters. In GLMs, the candidate explanatory variables to explain the time-varying parameters 22 

are comprised of the eight measuring indices of the climate and catchment conditions in low flow 23 

generation, i.e., total precipitation (P), mean frequency of precipitation events (λ), temperature (T), 24 

potential evapotranspiration (ET), climate aridity index (AIET), base-flow index (BFI), recession 25 

constant (K) and the recession-related aridity index (AIK). This framework was applied to the 26 

annual minimum flow series of both Huaxian and Xianyang gauging stations in the Weihe River, 27 

China. Stepwise regression analysis was performed to obtain the best subset of those candidate 28 

explanatory variables for the final optimum model. The results show that the inter-annual 29 

variability in the variables of those selected best subsets plays an important role in modeling 30 

annual low flow series. Specifically, analysis of annual minimum 30-day flow in Huaxian shows 31 

that AIK is of the highest relative importance among the best subset of eight candidates, followed 32 

by BFI and AIET. The incorporation of multiple indices related to low-flow generation permits 33 
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tracing various driving forces. The established link in nonstationary analysis will be beneficial to 34 

predict future occurrences of low-flow extremes in similar areas. 35 

Keywords: Climate Change; Streamflow Recession; Multiple Factors; Nonstationarity; 36 

Low-flow Frequency Analysis;  37 

 38 

1. Introduction 39 

Low flow is defined as ‘flow of water in a stream during prolonged dry weather’ (WMO, 40 

1974). Yu et al. (2014) described a low flow event as a segment of hydrograph during a period of 41 

dry weather with discharge values below a preset (relatively small) threshold. According to WMO 42 

(2009), annual minimum flows averaged over several days can be used to measure low flows. The 43 

investigation of the magnitude and frequency of low flows is of primary importance for 44 

engineering design and water resources management (Smakhtin, 2001). For recent years, low 45 

flows, as an important part of river flow regime, have been attracting the increasing attentions of 46 

hydrologists and ecologists, due to the significant impacts of climate change and human activities 47 

on most functions (e.g. providing water supply for production and living, diluting waste water, 48 

ensuring navigation, meeting ecological water requirement) of river flow during low-flow periods. 49 

(Bradford and Heinonen, 2008; Du et al., 2015; Kam and Sheffield, 2015; Kormos et al., 2016; Liu 50 

et al., 2015; Sadri et al., 2015; Smakhtin, 2001; WMO, 2009). 51 
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Low flows generally originate from groundwater or other delayed outflows (Smakhtin, 2001; 52 

Tallaksen, 1995). Their generation relates to both an extended dry weather period (leading to a 53 

climatic water deficit) and complex hydrological processes which determine how these deficits 54 

propagate through the vegetation, soil and groundwater system to streamflow (WMO, 2009). Thus, 55 

not only climate conditions drivers (e.g. potential evaporation exceeds precipitation), but 56 

catchment conditions drivers (e.g. the faster hydrologic response rate to precipitation) can cause 57 

low flows. The significant factors such as precipitation, temperature, evapotranspiration, 58 

streamflow recession, large-scale teleconnections and human forces may play important roles in 59 

influencing low-flow generation (Botter et al., 2013; Giuntoli et al., 2013; Gottschalk et al., 2013; 60 

Jones et al., 2006; Kormos et al., 2016; Roderick et al., 2013; Sadri et al., 2015). Gottschalk et al. 61 

(2013) presented a derived low flow probability distribution function with climate and catchment 62 

characteristics parameters (i.e., the mean length of dry spells -1  and recession constant of 63 

streamflow K ) as its distribution parameters. Botter et al. (2013) derived “a measurable index” 64 

(
-1 K ) which can be used for discriminating erratic river flow regimes from persistent river flow 65 

regimes. Recently, in Van Loon and Laaha (2015) used climate and catchment characteristics (e.g. 66 

the duration of dry spells in precipitation and the base flow index) to explain the duration and 67 

deficit of hydrological drought event and offered a further understanding of low-flow generation. 68 

Those studies indicated that climate and catchment conditions play an important role in producing 69 
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low flows.  70 

In low-flow design, conventional frequency analysis estimates low-flow statistics based on 71 

recorded data with the stationary hypothesis which means that the control mechanisms of 72 

environmental factors on the generation of the hydrological variable keep invariant in the past, 73 

present and future. However, global warming and human forces have changed climate and 74 

catchment conditions in some regions. Time-varying climate and catchment conditions will create 75 

influenced low flow series The hypothesis of stationarity has been suspected (Milly et al., 2008). If 76 

this problematic method is still used, the frequency analysis will leads to high estimation error and 77 

costly design. A common method to deal with this situation is to introduce the concept of 78 

hydrologic nonstationarity into analysis and to develop appropriate nonstationary frequency 79 

analysis. 80 

Previous hydrological literatures on frequency analysis of nonstationary low flow series 81 

mainly focus on two aspects: development of nonstationary method and exploration of covariates 82 

reflecting changing environments. Strupczewski et al. (2001) presented the method of 83 

time-varying moment which assumes that the hydrological variable of interest obeys a certain 84 

distribution type, but its moments change over time. The method of time-varying moment was 85 

modified to be the method of time-varying parameter values for the distribution representative of 86 

hydrologic data (Richard et al., 2002). Villarini et al. (2009) presented this method using the 87 
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Generalized Additive Models for Location, Scale, and Shape Parameters (GAMLSS) (Rigby and 88 

Stasinopoulos, 2005), a flexible framework to assess nonstationary time series. The time-varying 89 

parameter method can be extended to the physical covariate analysis by replacing time with any 90 

others physical covariates (Du et al., 2015; Jiang et al., 2014; Kwon et al., 2008; López and 91 

Francés, 2013; Liu et al., 2015; Villarini et al., 2010; Villarini and Strong, 2014). For example, 92 

Jiang et al. (2014) used reservoir index as explanatory variables based on the time-varying copula 93 

method for bivariate frequency analysis of nonstationary low-flow series in Hanjiang River, China. 94 

Du et al. (2015) took precipitation and air temperature as the explanatory variables to explain the 95 

inter-annual variability in low flows of Weihe River, China. Liu et al. (2015) took Sea Surface 96 

Temperature in Nino3 region, the Pacific Decadal Oscillation, the sunspot number (3 years ahead), 97 

the winter areal temperature and precipitation as the candidate explanatory variables to explain the 98 

inter-annual variability in low flows of Yichang station, China. Kam and Sheffield (2015) ascribed 99 

the increasing inter-annual variability of low flows over the eastern Unites States to North Atlantic 100 

Oscillation and Pacific North America.  101 

Low flows are more vulnerable to influences of climate change and human activities than 102 

high flows. However, compared with the nonstationary flood frequency analysis, the studies on the 103 

nonstationary frequency analysis of low-flow series is not very extensive because of incomplete 104 

knowledge of low flow generation (Smakhtin, 2001). Most of these studies explain nonstationarity 105 
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of low-flow series only by using climatic indicators or a single indicator of human activity. 106 

However, the indicators of catchment conditions (e.g. recession rate) related to physical 107 

hydrological process have seldom been attached in nonstationary modeling of low flow series. 108 

This leads to lack of linking with hydrological process, which in turn would exclude further 109 

analysis, such as accurately tracing origins of change in low flow series. 110 

The goal of this study is to develop a nonstationary low-flow frequency analysis framework with 111 

the consideration of the time-varying climate and catchment conditions (TCCCs). In this 112 

framework, the climate and catchment conditions are quantified using the eight indices, i.e., 113 

meteorological variables (total precipitation P , mean frequency of precipitation events  , 114 

temperature T and potential evapotranspiration ET ), basin storage characteristics (base-flow 115 

index BFI , recession constant K ) and aridity indexes (climate aridity index ETAI , the 116 

recession-related aridity index KAI ). The non-stationary frequency analysis with TCCCs 117 

developed in this study is able to give the trace of nonstationary low-flow drivers and to estimate 118 

the contribution of each driver to the change in low-flow series.  119 

This paper is organized as follows. Section 2 describes the methods. We describe the Weihe 120 

River basin and available data sets used in this study in Section 3, followed by a presentation of 121 

the results and discussion in Section 4. Section 5 summarizes the main conclusions. 122 
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2 Methodology 123 

In this section, first, the low-flow frequency analysis model is constructed based on the 124 

nonstationary probability distributions method, in which distribution parameters serving as 125 

response variables can vary as functions of explanatory variables. Second, the candidate 126 

distributions are described to determine the different types of nonstationary frequency curves. 127 

Then, the eight candidate explanatory variables are presented to incorporate time-varying climate 128 

and catchment conditions (TCCCs) into distribution models for the nonstationary frequency 129 

analysis. Finally, estimation of model parameters and selection of models are illustrated. 130 

2.1 Construction of the low-flow nonstationary frequency analysis model 131 

Generally, a nonstationary frequency analysis model can be established based on the 132 

time-varying distribution parameters method (Du et al., 2015; López and Francés, 2013; Liu et al., 133 

2015; Richard et al., 2002; Villarini and Strong, 2014). For the nonstationary probability 134 

distribution  t

Y tf Y θ , let tY  be a random variable at time  ( 1,2,..., )t t N  and vector 135 

1 2[ , ,..., ]t tt t

mθ     be the time-varying parameters. The number of parameters m in hydrological 136 

frequency analysis is generally limited to three or less. The function relationship between the thk  137 

parameter 
t

k  and the multiple explanatory variables is expressed as follows: 138 

    1 2, ,...,k

t t t t

k k nh xg x x   (1) 139 

where 1 2, ,...,t t t

nx x x  are explanatory variables; n  is the number of explanatory variables; ( )kg   140 
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is the link function which ensures the compliance with restrictions on the sample space and is 141 

usually set to natural logarithm for the given negative predictions; ( )kh   is the function for 142 

nonstationary modeling. The theory of Generalized Linear Model (Dobson and Barnett, 2012) is 143 

used to build function relationships between distribution parameters and their explanatory 144 

variables. In GLMs, the response relationship can be generally expressed as   145 

   0

1

i n
t t

k k k ik i

i

g x 




   (2) 146 

where  ( 0,1,2,..., , 1,..., )ik i n k m    are the GLM parameters.  147 

In order to give a further nonstationary analysis, Eq. (2) is modified in this study using 148 

dimensionless method. The value of 
t

k  could be assumed to be equal to its mean ( k ) when all 149 

explanatory variables are equal to their mean ( ix ), i.e.,  150 

  1 1 2 2, ,...,t t t t

k n knx x x x x x      (3) 151 

Eq. (2) is then modified as 152 

 

 

0

1

0

      1, 2, ,

1

t i n
tk

k k ik i

i

t
t i i
i

i

t

k

k

k

tk
k k k k

g z

x x
z i n

s

g g

，






 











 
  

 


  

 
   

 



 (4) 153 

where 
t

iz  is normalized explanatory variables; is  is the standard deviation of
t

ix ;154 

 ( 1,2,..., , 1,..., )ik i n k m    are the standard GLM parameters. Let the link function ( )kg   be the 155 
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natural logarithmic function ln( )  and 
t

l  be the distribution parameter in 1 2[ , ,..., ]t t t

m    with 156 

most significant change, the degree of nonstationarity in low flow series can be defined as 157 

( )ln l ( )nt

l l . Then, the contribution 
t

ic  of each explanatory variable
t

ix  to 1 1( )ln l ( )nt
 158 

could be defined as  159 

 

t
t i i
i ik

i

x x
c

s



  (5) 160 

2.2 Candidate distribution functions 161 

We need to select the form of probability distribution ( )Yf   to determine what type of 162 

nonstationary frequency curves will be produced. Various probability distributions have been 163 

compared or suggested in modeling of low-flow series (Du et al., 2015; Hewa et al., 2007; Liu et 164 

al., 2015; Matalas, 1963; Smakhtin, 2001). An extensive overview of distribution functions for low 165 

flow is given in Tallaksen et al. (2004). Following these recommendations, we consider five 166 

distributions, i.e. Pearson-III (PIII), Gamma (GA), Weibull (WEI), Lognormal (LOGNO) and 167 

Generalized Extremes Value (GEV) as candidates in this study (Table 1). In the case of Pearson-III 168 

distribution, considering that the parameter 3  of Pearson-III as lower bound should approach 169 

zero and the parameter 3  of GEV is quite sensitive and difficult to be estimated, we assume 170 

them to be constant in this study. 171 
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2.3 Candidate explanatory variables 172 

We look for variables 1 2, ,...,t t t

nx x x  that can explain parts of the variations in distribution 173 

parameters t
θ . From the perspective of low-flow generation, the dependency between low-flow 174 

regime and both climate and catchment conditions has been presented by previous studies (Botter 175 

et al., 2013; Gottschalk et al., 2013; Van Loon and Laaha, 2015). We focus on eight measuring 176 

indices: total precipitation, mean frequency of precipitation events, temperature, potential 177 

evapotranspiration, climate aridity index, base-flow index, recession constant and recession-related 178 

aridity index. These indices were chosen to incorporate time-varying climate and catchment 179 

conditions (TCCCs) in nonstationary modeling, of low-flow frequency and serving as candidate 180 

explanatory variables. The values of them at each year could be estimated from 181 

hydro-meteorological data. Annual precipitation ( P ) and temperature (T ) are calculated directly 182 

by meteorological data. The remaining indices need to be estimated indirectly. Detailed estimation 183 

procedures are shown as follows.  184 

2.3.1. Annual mean frequency of precipitation events (λ) 185 

Annual mean frequency of precipitation events is defined as an index to represent the 186 

intensity of precipitation recharge to the streamflow: 187 

 
 

1

1 w W
w

w r

N A

W t






     (6) 188 
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where  wN A  is the number of daily rainfall events A  (with values more than the threshold 0.5 189 

mm) in thw  windows with a length rt ; W is the number of windows.  190 

2.3.2. Annual climate aridity index (AIET) 191 

The ratio of annual potential evaporation to precipitation, commonly known as the climate 192 

aridity index, has been used to assess the impacts of climate change on annual runoff (Arora, 2002; 193 

Jiang et al., 2015). The climate aridity index largely reflects the climatic regimes in a region and 194 

determines runoff rates (Arora, 2002). Therefore, we choose the annual climate aridity index as a 195 

measure of time-varying climate and catchment conditions and estimate its value in a whole region 196 

using 197 

 
ET

ET
AI

P
    (7) 198 

where P  is annual areal precipitation (mm); ET  is annual areal potential evapotranspiration. 199 

The Hargreaves equation (Hargreaves and Samani, 1985) is applied to calculate ET  using the 200 

R-package ‘Evapotranspiration’ (Guo, 2014). 201 

2.3.3. Annual base-flow index (BFI) 202 

The base flow index (BFI) is defined as the ratio of base flow to total flow. This index has 203 

been applied to quantify catchment conditions (e.g. soil, geology and storage-related descriptors) 204 

to explain hydrological drought severity (Van Loon and Laaha, 2015). We also choose annual base 205 

flow index ( BFI ) as a measure of TCCCs. BFI  is estimated using a hydrograph separation 206 
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procedure in R-package ‘lfstat’ (Koffler and Laaha, 2013). 207 

2.3.4. Annual streamflow recession constant (K) 208 

Recession constant is an important catchment characteristic index measuring the time scale of 209 

the hydrological response and reflecting water retention ability in the upstream catchment (Botter 210 

et al., 2013). Various estimation methods have been developed to extract recession segments and to 211 

parameterize characteristic recession behavior of a catchment (Hall, 1968; Sawaske and Freyberg, 212 

2014; Tallaksen, 1995). 213 

In this study, annual recession analysis (ARA) is performed to obtain annual streamflow 214 

recession constant (K). In ARA, the linearized Depuit-Boussinesq equation is used to parameterize 215 

characteristic recession behavior of a catchment and is written as  216 

 
1t

t

dQ
Q

dt K
     (8) 217 

where tQ  is the value at time t . Eq. (8) is investigated by plotting data points tdQ

dt
 against 

tQ  218 

of all extracted recession segments from hydrographs at each year. The criteria of recession 219 

segments extraction is based on the Manual on Low-flow Estimation and Prediction (WMO, 2009). 220 

Then, the annual recession rate ( 1K  ) is estimated as the slope of fitted straight line of these data 221 

points with least square method. We calculated K using R-package ‘lfstat’ (Koffler and Laaha, 222 

2013).   223 
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2.3.5. Annual recession-related aridity index (AIK) 224 

In this study, recession-related aridity index is defined as the ratio of recession rate ( 1K  ) to 225 

mean precipitation frequency ( ), denoted as  226 

 

-1

KAI
K


    (9) 227 

This ratio plays an important role in controlling on river flow regime (Botter et al., 2013; 228 

Gottschalk et al., 2013) and serves as an indicator measuring the recession-related aridity degree of 229 

the streamflow in river channel. For example, faster recession process or lower precipitation 230 

frequency may lead to increased runoff loss or decreased precipitation supply. Consequently, the 231 

higher the value KAI  is, the more likely low flow events occur, and vice versa.  232 

2.4 Parameter estimation 233 

The model parameters including ( 1,2,..., )k k m   and  ( 1,2,..., , 1,..., )ik i n k m    are 234 

estimated. ( 1,2,..., )k k m   are estimated from outputs of stationary frequency analysis through 235 

maximum likelihood method. We have 236 

    1 2 1 2

1

, ,..., ln , ,...,
t N

m Y t m

t

L f y     




 
     (10) 237 

where ty  is observed low flow at time t ; N is the number of samples. The parameter 238 

 ( 1,2,..., , 1,..., )ik i n k m    are estimated through maximum likelihood method to produce 239 
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nonstationary low-flow frequency curves:  240 

      
11 1

1 11 1 11

1

1

1

,...,

... ,..., ,..., ,..., ,...,

,

ln ,...,

...,

n

t t t t

n n n m nm

m n

t

t

m

N
t t

Y m

t

z z z zL f y

 

   












 
 

 
 
 

  (11) 241 

 The residuals (normalized randomized quintile residuals) are used to test the goodness-of-fit of 242 

fitted model objects (Dunn and Symth, 1996):  243 

   1 ˆˆ t

t Y tr F y θ
   (12) 244 

where ( )YF   is the cumulative distribution of 
ty ;  1   is the inverse function of the standard 245 

normal distribution. The distribution of the true residuals 
t̂r  converges to standard normal if the 246 

fitted model is correct. Worm plot (Buuren and Fredriks, 2001) is used to check whether 
t̂r  have a 247 

standard normal distribution. 248 

2.5 Model selection  249 

Model selection contains the selection of the type of probability distribution and the selection 250 

of the explanatory variables to explain the response variables (i.e., distribution parameters 
1
 and 251 

2
). In order to obtain the final optimal model, the selection of the explanatory variables for 

1
 252 

and 
2
 is conducted by a stepwise selection strategies (Stasinopoulos and Rigby, 2007; Venables, 253 

2002): select a best subset of candidate explanatory variables for 
1
 using a forward approach 254 

(which starts with no explanatory variable in the model and tests the addition of each explanatory 255 

variable using a chosen model fit criterion); given this subset for 1  select another subset for 
2
 256 
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(forward). The stepwise selection strategies can get a series of stepwise models with different 257 

numbers of explanatory variables. In order to detect how the number of explanatory variables 258 

influences the performance of the model for describing non-stationarity, we investigate the five 259 

types of stepwise models: the zero-covariate model or stationary model (M0), the time covariate 260 

model (M1), single physical covariate model (M2), the double physical covariate model (M3) and 261 

the optimal number physical covariate model (M4), as shown in Table 2. The model fit criterion is 262 

based on the Akaike’s information criterion (Akaike, 1974) as shown by the following 263 

 2 2AIC ML df      (13) 264 

where ML  is the log-likelihood in Eq. (11) and df  is the number of degrees of freedom. The 265 

model with the lower AIC value was considered better.  266 

3. Study Area and Data  267 

3.1. The study area  268 

The Weihe River, located in the southeast of the Northwest Loess Plateau, is the largest 269 

tributary of the Yellow River, China. The Weihe River has a drainage area of 134 766 km2, 270 

covering the coordinates of 33 42 -37 20 N    104 18 -110 37 E     (Fig. 1). This catchment generally 271 

has a semi-arid climate, with extensive sub-humid continental monsoonal influence. Average 272 

annual precipitation of the whole area over the period 1954-2009 is about 540 mm, and has a wide 273 

range (400-1000 mm) in various regions. Under the significant impacts of climate change and 274 
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human activities in the Weihe River basin in recent decades, the hydrological regime of the river 275 

has changed over time (Du et al., 2015; Jiang et al., 2015; Xiong et al., 2015).  276 

<Figure 1> 277 

In the Weihe basin, the impacts of agricultural irrigation on runoff have been found to be 278 

significant (Jiang et al., 2015; Lin et al., 2012). Lin et al. (2012) mentioned that the annual runoff 279 

of the Weihe River was significantly affected by irrigation diversion of the Baoji Gorge irrigation 280 

area. The irrigated area of Baoji Gorge Irrigation Area increased over time since the founding of 281 

P.R. China in 1949, and due to one influential irrigation system project in that area, it became more 282 

than twice of the original one since 1971. Jiang et al. (2015) demonstrated that in the Weihe basin, 283 

irrigated area, as compared with the other indices e.g. population, gross domestic product and 284 

cultivated land area, was a more suitable human explanatory variable for explaining the 285 

time-varying behavior of annual runoff. Within the above background, it is important to 286 

considering the effects of human activities that mainly originate from irrigation diversion, and 287 

especially for studying low flow series in this basin. In this study, we use the available data 288 

(1980-2005) of the irrigation diversion system on plateau in Baoji Gorge Irrigation Area in Zhang 289 

(2008) to provide some information for the knowledge of low flow generation. The estimations of 290 

annual recession rate ( 1K  ) by the daily streamflow data are expected to incorporate the 291 

information of impacts of water diversions on the low flows in the river channel. 292 
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3.2. Streamflow data  293 

We used daily streamflow records (1954-2009) provided by the Hydrology Bureau of the 294 

Yellow River Conservancy Commission from both Huaxian station (with a drainage area of 106 295 

500 km2) and Xianyang station (with a drainage area of 46 480 km2). Low-flow extreme events 296 

were selected from the daily streamflow series using the widely-used annual minimum series 297 

method (WMO, 2009). AMn is the annual minimum n day flow during hydrological year defined to 298 

start on 1 March. Consequently, AM1, AM7, AM15 and AM30 are selected as low-flow extreme 299 

events in this study. The original measure unit of streamflow data ( -3 1m s ) is converted to 300 

--4 213 - s10 m km   by dividing by the corresponding drainage area (km2) for convenience of 301 

comparison of results between the Huaxian and Xianyang gauging stations  302 

3.3. Precipitation and temperature data  303 

We download daily total precipitation and daily mean temperature records for 19 304 

meteorological stations over the basin from the National Climate Center of the China 305 

Meteorological Administration (source: http://cdc.cma.gov.cn). The areal average daily series of 306 

both variables above Huaxian and Xianyang stations are calculated using the Thiessen polygon 307 

method (Szolgayova et al., 2014; Thiessen, 1911). The annual average temperature (T ) and annual 308 

total precipitation ( P ) over the period 1954-2009 are calculated for each catchment.  309 
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4. Results and discussion 310 

4.1. Identification of nonstationarity 311 

Figure 2 shows that the Weihe River basin is characterized by a warm and humid summer 312 

(June, July, and August) with low ratio of irrigated diversion, and by a cold and dry winter 313 

(December, January, and February) with high ratio of irrigated diversion. The majority of the low 314 

flow events in this basin occur in these two seasons and show a bimodal frequency distributions of 315 

occurrence with two peaks in February and June, respectively (Fig. 2a). This result implies that the 316 

generation of low flows may be influenced by more than one factor such as high ratio of irrigated 317 

diversion, high air temperature or lack of precipitation.  318 

<Figure 2> 319 

Overall, four annual minimum streamflow series (
1AM , 

7AM , 
15AM  and 

30AM ) in both 320 

Huaxian and Xianyang gauging stations show decreasing trends, as indicated by the fitted (dashed) 321 

trend lines in Fig. 3. Compared with Huaxian, Xianyang has a larger runoff modulus (the flow per 322 

square kilometer) and a larger decrease in annual minimum streamflow series. For example, the 323 

decline slope of 
30AM  is -0.0725 ( -1-4 3 -210 s rkm ym   ) in Huaxian station which is larger than 324 

-0.1338 ( -1-4 3 -210 s rkm ym   ) in Xianyang station.  325 

<Figure 3> 326 

Figure 4 shows the kernel density estimations and time processes of the eight candidate 327 
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explanatory variables (Sect. 2.3) reflecting the TCCCs for both Huaxian (H) and Xianyang (X) 328 

stations. The results show that these variables have different variation patterns. For example, the 329 

mean frequency of precipitation events ( ) has a decreasing trend, while temperature (T ) has an 330 

increasing trend.  331 

<Figure 4> 332 

The significance of trends in the four annual minimum streamflow series and eight 333 

explanatory variables is tested by the Mann-Kendall trend test (Kendall, 1975; Mann, 1945; Yue et 334 

al., 2002), and the change-points in these series are detected by the Pettitt’s test (Pettitt, 1979). The 335 

results in Table 3 show that in both Huaxian and Xianyang stations, the decreasing trends in all the 336 

four low-flow series (
1AM , 

7AM , 
15AM  and 

30AM ) and two explanatory variables (  and 337 

P ), and the increasing trends in T , ET , and 
ETAI  are significant at the 0.05 level (Table 3), 338 

but BFI  shows no significant trends. However, K  and 
KAI  had significantly decreasing 339 

trends only in Huaxian station ( - 0.05p value  ). The results of change-point detection show that 340 

all low-flow series are located at 1968-1971 ( - 0.05p value  ) except 
30AM  at Xianyang station 341 

whose change point is located at 1993 ( - 0.05p value  ); for the eight candidate explanatory 342 

variables, the change points of the variables related to temperature (T , ET , ETAI ) in both stations 343 

are located at 1990-1993 ( - 0.05p value  ), the change points of the variables related to 344 
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precipitation ( , P ) in both stations are close at 1984-1990 ( - 0.186p value  ) and the change 345 

points of the variables related to streamflow recession ( K ,
KAI ) in Huaxian station are located at 346 

1968-1971 ( - 0.05p value  ). However, BFI  in both stations and K , 
KAI  in Xianyang station 347 

show no significant change points. 348 

A preliminary attribution analysis is performed using the Pearson correlation matrix to 349 

investigate the relations between the annual minimum series and eight candidate explanatory 350 

variables. Figure 5 indicates that there are significant linear correlations between the four 351 

minimum low-flow series (
1AM , 

7AM , 
15AM  and

30AM ) and all the explanatory variables, with 352 

the absolute values of Pearson correlation coefficients larger than 0.27 ( - 0.05p value  ). These 353 

potential physical causes of nonstationarity in low flows are further considered by establishing 354 

low-flow nonstationary model with TCCCs in the following section. 355 

<Figure 5> 356 

4.2. Nonstationary frequency analysis models  357 

4.2.1 Single covariate models  358 

Figure 6 presents the AIC values of the three types of models (M2, M1 and M0) fitted for the 359 

low flow series ( 1AM , 
7AM , 15AM  and 30AM ). Some interesting results are shown as follows. 360 

First, nonstationary models (M2 and M1) have lower AIC values than stationary model (M0), 361 
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which suggests that nonstationary models are worth considering. Second, for Huaxian, irrespective 362 

of the chosen explanatory variables, the distribution type plays an important role in modeling 363 

nonstationary low flow series. For example, PIII, GA and WEI distributions in most cases have 364 

lower AIC values than LOGNO and GEV distribution. However, for Xianyang, choosing a suitable 365 

explanatory variable may be more important than choosing a distribution type. For example, 366 

variables t , P , T , and 
ETAI  in most cases have lower AIC values than the other explanatory 367 

variables. Finally, in Huaxian, the best M2 models for modeling
1AM , 

7AM , 
15AM  and 

30AM  368 

are all found in the M2_ KAI  model (using 
KAI  as an explanatory variable); while in Xianyang, 369 

the best M2 models for modeling 
1AM , 

7AM , 
15AM  and 

30AM  are all found in the M2_K , 370 

M2_ ETAI , M2_ ETAI  and M2_T  model, respectively. These results indicated that in Huaxian, 371 

KAI  is the dominant variable causing nonstationarity in 
1AM , 

7AM , 
15AM  and 

30AM ; while 372 

in Xianyang, the dominant variables causing nonstationarity in 
1AM , 

7AM , 
15AM  and 

30AM  373 

are K , 
ETAI , 

ETAI  and T , respectively. Table 4 summarizes the above analysis.  374 

<Figure 6> 375 

Figure 7 shows the diagnostic assessment of the best M2 model (GA_M2 with the optimal 376 

explanatory variable) for 
30AM  in both Huaxian and Xianyang stations. The centile curves plots 377 

of GA_M2 (Figs. 7a and 7b) show the observed values of 
30AM , the estimated median and the 378 

areas between the 5th and 95th centiles. Figure 7a shows the response relationship between 30AM  379 
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and 
KAI  in Huaxian: the increase of 

KAI  means the smaller magnitude of low-flow events 380 

because a high value of 
KAI  (faster stream recession or fewer rainy days) may lead to faster 381 

water loss or less supply. In Fig. 7b, the higher values of T  means the smaller magnitude of low 382 

flow events, which suggests that T  plays an important role in driving low-flow generation in 383 

Xianyang. Figs 7c and 7d show that the worm points are within the 95% confidence intervals, 384 

thereby indicating a good model fit.  385 

<Figure 7> 386 

4.2.2 Multiple covariate models 387 

Figure 8 shows that the AIC values of stationary model (M0), time covariate model (M1), 388 

physical covariate models (M2, M3 and M4 with the corresponding optimal explanatory variables) 389 

for 
1AM , 

7AM , 
15AM  and

30AM  in both Huaxian and Xianyang stations. For all low flow 390 

series, the lowest AIC values are always found in the M4 models, suggesting that it is necessary to 391 

consider multiple explanatory variables for nonstationary modeling. 392 

<Figure 8> 393 

A summary of frequency analysis based on five types of models (M0, M1, M2, M3 and M4) 394 

for both Huaxian and Xianyang gauging stations is presented in Table 5 and Table 6, respectively. 395 

For M4 and M3 models, the relative importance of selected explanatory variables is identified 396 
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through the stepwise selection method. For instance, for 
30AM  in Xianyang (Table 5), 397 

temperature (T) with highest relative importance, followed orderly by P , BFI  and K . We can 398 

also find that if the candidates are highly correlated, they do not seem to be selected as the 399 

explanatory variables at the same time. For example, one of those variables in terms of only air 400 

temperature (T  ), evapotranspiration ( ET ) and the climate aridity index (
ETAI ) will appear in a 401 

best subset of eight candidates in the final optimum model. This suggests that multicollinearity 402 

problem in multiple variables analysis can be reduced, which will help obtain more reliable GLMs 403 

parameters for contribution analysis.  404 

The diagnostic assessment of the best M4 model (GA_M4) for 
30AM  at two stations is 405 

presented by Fig. 9. The centile curves plots of GA_M4 (Figs. 9a and 9b) show the more 406 

sophisticated nonstationary modeling than GA_M2 (Fig 7). When using GA_M4 to model 
30AM  407 

in Huaxian (Fig. 9a), similar to GA_M2, the lower low flows are found to also correspond to high 408 

value of 
KAI , but GA_M4 are able to identify the more complex variation patterns of low flows 409 

through the incorporation of BFI  and 
ETAI . Figures 9c and 9d show that the data points of 410 

worm plots of GA_M4 are almost within the 95% confidence intervals, thereby indicating a 411 

acceptable model fit. 412 

<Figure 9> 413 

Figure 10 presents the contribution of each selected explanatory variable to    1 1ln lnt   414 
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in observation year based on GA_M4 for 
30AM  in Huaxian and Xianyang. We can find that for 415 

Huaxian, the simulation value of  1ln t  frequently occur below  1ln   during the two periods 416 

of about 1970-1982 and 1993-2003, which is in accordance with the observed decrease in 
30AM  417 

of Huaxian station during these periods. In the former period 1970-1982, the largest negative 418 

contribution is found in 
KAI . In the latter period 1993-2003, the largest negative contribution was 419 

found in 
ETAI . These results suggest that the significant change of 

KAI  (mainly because of 420 

faster streamflow recession after nearly 1971) dominates the decrease in 
30AM  of Huaxian 421 

during 1970-1982, while after 1993, the significant change of 
ETAI  (due to decreasing 422 

precipitation and increasing evapotranspiration) has a main effect on the decrease in 
30AM  of 423 

Huaxian.  424 

4.3. Discussion 425 

The impacts of both human activities and climate change on low flows of the study area of 426 

the Weihe basin led to time-varying climate and catchment conditions (TCCCs). Nonstationary 427 

modeling for annual low flow series considering TCCCs is clearly different from either the 428 

stationary model (M0) or the time covariate model (M1). The result demonstrates that considering 429 

multiple drivers (e.g. the variability in catchment conditions), especially in such an artificially 430 

influenced river, is necessary for nonstationary modeling of annual low flow series.  431 

In this study area, nonstationary modeling considering TCCCs is supported by the following 432 
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facts and findings. For human activities, an important milestone representative is the completion 433 

and operation of the irrigation system on plateau in Baoji Gorge Irrigation Area since 1971 (Sect. 434 

3.1). The change-point detection test in Sect. 4.1 shows that significant change points of both 435 

annual recession constant ( K ) and low flow series occur exactly in around 1971. This result 436 

demonstrates that changes in both K  and 
30AM  may involve a consequence of this project. In 437 

addition to human activities, climate change also makes a considerable contribution to 438 

nonstationarity of low flows, as suggested by nonstationary modeling using TCCCs with stepwise 439 

analysis. Actually, climate driving pattern may strengthen after nearly 1990, which is indicated by 440 

change-point detection test of both annual mean temperature (T ) and annual precipitation ( P ) as 441 

well as the behavior of annual low flow series after nearly 1990. Therefore, the temporal 442 

variability in streamflow recession, air temperature and precipitation (the frequency and volume of 443 

rain events) should be the main driving factors of generating low flow regimes. 444 

Ignoring the negative impacts of the errors in estimating annual recession constant ( K ) 445 

which are caused by insufficient data points of extracted stream segments at some wet years may 446 

lead to the propagation of high errors in annual recession analysis, and accordingly affect the 447 

quality of nonstationary frequency analysis when using K  as an explanatory variable. Further 448 

study will give more reliable estimation of K  through improving annual recession analysis. 449 
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5. Conclusion 450 

There is an increasing need to develop an effective nonstationary low-flow frequency model to 451 

deal with nonstationarities caused by climate change and time-varying anthropogenic activities. In 452 

this study, time-varying climate and catchment conditions (TCCCs) in the Weihe River basin were 453 

measured by annual time series of the eight indices, i.e., total precipitation (P), mean frequency of 454 

precipitation events (λ), temperature (T), potential evapotranspiration (ET), climate aridity index 455 

(AIET), base-flow index (BFI), recession constant (K), and the recession-related aridity index (AIK). 456 

The nonstationary distribution model was developed using these eight indices as candidate 457 

explanatory variables for frequency analysis of time-varying annual low flow series caused by 458 

multiple drivers. The main driving forces of the decrease in low flows in the Weihe River include 459 

reduced precipitation, warming climate and faster streamflow recession. Therefore, a complex 460 

deterioration mechanism resulting from these factors demonstrates that in this arid and semi-arid 461 

area, the water resources could be vulnerable to adverse environmental changes, thus portending 462 

increasing water shortages. The nonstationary low-flow model considering TCCCs can provide the 463 

knowledge of low-flow generation mechanism and give more reliable design of low flows for 464 

infrastructure and water supply.   465 

  466 
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 564 

Figure 565 

 566 

Figure 1. Location, topography, hydro-meteorological stations and river systems of the Weihe 567 

River basin.  568 
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 570 

 571 

Figure 2. Overview of annual low flows and important environment factors using mean monthly 572 

data. (a) is frequency distributions of the occurrence time of the annual minimum flows with four 573 

durations at Huaxian (H) and Xianyang (X); the black line is mean monthly diversion (1980 to 574 

2005) in Baoji Gorge area. (b) Mean monthly precipitation and temperature from 1954 to 2009.  575 
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 577 

Figure 3. The annual minimum low flows and fitted trend lines in both Huaxian (H) and Xianyang 578 

(X) gauging stations.  579 
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 581 

Figure 4. Frequency distributions (using the kernel density estimations) and annual series of eight 582 

candidate explanatory variables in both Huaxian (H) and Xianyang (X) stations. 583 
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 585 

 586 

 587 

Figure 5. The Pearson correlation coefficients matrix between the annual minimum flow series and 588 

eight candidate explanatory variables in Huaxian (H) and Xianyang (X) stations; the darker color 589 

intensity represents a higher level of correlation (blue indicates positive correlation, and red 590 

indicates negative correlations). 591 
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 593 

Figure 6. Comparisons among M0, M1 and M2 based on the AIC values for the four observed 594 

low-flow series in Huaxian (H) at left panel and Xianyang (X) at right panel; darker red color 595 

represents a higher goodness of fit.   596 
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H                         X 598 

 599 

Figure 7. Performance assessments of the best M2 model (GA_M2) for 
30AM  in Huaxian (H) at 600 

left panel and Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M2 (red 601 

lines represent the centile curves estimated by GA_M2; the 50th centile curves are indicated by 602 

thick red; the yellow-filled areas are between the 5th and 95th centile curves; the black points 603 

indicate the observed series); (c) and (d) are the worm plots of GA_M2 for the goodness-of-fit test; 604 

a reasonable model fit should have the data points fall within the 95% confidence intervals 605 

(between the two red dashed curves).  606 
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H                         X 607 

  

  

  

  

Figure 8. Comparisons among stationary model (M0), time covariate model (M1) and physical 608 

covariate models (M2, M3, M4 with the corresponding optimal explanatory variables) in Huaxian 609 

(H) at left panel) and Xianyang (X) at right panel. 610 

 611 
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H                       X 613 

 614 

Figure 9. Performance assessments of the best M4 model (GA_M4) for 
30AM  in Huaxian (H) at 615 

left panel and Xianyang (X) at right panel. (a) and (b) are the centile curves plots of GA_M4 (red 616 

lines represent the centile curves estimated by GA_M4; the 50th centile curves are indicated by 617 

thick red; the yellow-filled areas are between the 5th and 95th centile curves; the filled black 618 

points indicate the observed series); (c) and (d) are the worm plots of GA_M4 for the 619 

goodness-of-fit test; A reasonable model fit should have the data points fall within the 95% 620 

confidence intervals (between the two red dashed curves). 621 

  622 

(c) 

D
ev

ia
ti

o
n

(d)

D
ev

ia
ti

o
n

(a) GA_M4: ln(θ1)=1.09-0.4AIK+ 0.32BFI -

0.34AIT, ln(θ2)=-0.133

(b) GA_M4: ln(θ1)=1.59-0.33T+0.27P+

0.22BFI+0.18K, ln(θ2)=-0.184

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-259, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



 

41 

 623 

Figure 10. Contribution of selected explanatory variables to    1 1ln lnt   in different periods 624 

based on GA_M4.  625 
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 629 

Table 630 

Table 1. The probability density functions and moments (the mean and variance) for the candidate 631 

distributions in this study.  632 

Distributions Probability density function Distribution moments 
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Table 2. Description of the developed nonstationary models using time or the indices of TCCCs as 634 

explanatory variables. 635 

Model 

category 
Codes 

Distribution 
 

Description 

GA WEI LOGNO PIII GEV 
 

Variable 

category 

The numbers of 

variables 

Stationary  M0 GA_M0 WEI_M0 LOGNO_M0 PIII_M0 GEV_M0  - Zero 

Nonstationary  

M1 GA_M1 WEI_M1 LOGNO_M1 PIII_M1 GEV_M1 
 

Time  One 

M2 GA_M2 WEI_M2 LOGNO_M2 PIII_M2 GEV_M2 
 

TCCCs  One 

M3 GA_M3 WEI_M3 LOGNO_M3 PIII_M3 GEV_M3 
 

TCCCs  Two 

M4 GA_M4 WEI_M4 LOGNO_M4 PIII_M4 GEV_M4  TCCCs  
Identified by the 

stepwise selection 

 636 
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Table 3. The results of trend test and change-point detection for the four low flow series and eight 638 

candidate explanatory variables in Huaxian and Xianyang stations. 639 

Station Variable 

Mann-Kendall test Pettitt's test 

S p-value Change point p-value 

Huaxian AM1 -564 6.91E-05(***) 1968 1.34E-03(**) 

 AM7 -560 7.79E-05(***) 1968 1.44E-03(**) 

 AM15 -438 2.01E-03(**) 1971 4.85E-03(**) 

 AM30 -378 7.71E-03(**) 1971 9.96E-03(**) 

 
K -312 2.79E-02(*) 1968 8.11E-02(.) 

 
BFI 52 7.19E-01( ) 1998 3.88E-01( ) 

 
λ -632 8.20E-06(***) 1984 3.02E-04(***) 

 
P -292 3.97E-02(*) 1985 1.86E-01( ) 

 
T 752 1.11E-07(***) 1993 8.17E-06(***) 

 
ET 548 1.11E-04(***) 1993 1.98E-03(**) 

 
AIET 384 6.79E-03(**) 1990 6.03E-02(.) 

 
AIK 376 8.04E-03(**) 1971 3.60E-02(*) 

Xianyang AM1 -517 2.65E-04(***) 1968 2.2E-03(**) 

 AM7 -483 6.58E-04(***) 1970 2.5E-03(**) 

 AM15 -474 8.29E-04(***) 1971 2.2E-03(**) 

 AM30 -570 5.78E-05(***) 1993 4.5E-04(***) 

 
K -210 1.39E-01( ) 1966 2.03E-01( ) 

 
BFI 64 6.56E-01( ) 2003 8.65E-01( ) 

 
λ -652 4.21E-06(***) 1984 6.00E-05(***) 

 
P -414 3.51E-03(**) 1990 1.45E-02(*) 

 
T 724 3.22E-07(***) 1993 5.41E-06(***) 

 
ET 372 8.74E-03(**) 1993 3.01E-03(**) 

 
AIET 454 1.37E-03(**) 1993 8.82E-03(**) 

 
AIK 290 4.11E-02(*) 1968 1.63E-01( ) 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 640 
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Table 4. The results of M2 models for modeling low-flow series in Huaxian and Xianyang stations. 643 

Station Series 
Optimal 

variable 

Optimal 

distribution 
AIC 

Distribution parameters 

 1ln    2ln   
3  

Huaxian 

AM1 AIK WEI 95.0 0.19 0.72 KAI   -0.418 - 

AM7 AIK PIII 135.7 0.43 0.76 KAI  0.219 0.007 

AM15 AIK PIII 184.2 0.83 0.75 KAI  0.105 0.069 

AM30 AIK GA 217.4 1.09 0.59 KAI  -0.133 - 

Xianyang 

AM1 K GA 210.7 1.00 0.40K  -0.118 - 

AM7 AIET GA 228.4 1.17 0.45 ETAI  -0.139 - 

AM15 AIET GA 251.0 1.39 0.49 ETAI  -0.139 - 

AM30 T GA 270.1 1.59 0.50T  -0.184 - 
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Table 5. The summary of frequency analysis for four annual low flow series of Huaxian. 646 

Series 
Model 

codes 
Optimal variable AIC 

Distribution parameters 

 1ln    2ln   
3  

AM1 WEI_M0 - 104.6 -0.19 -0.418 - 

 WEI_M1 t 91.1 -0.19-0.84t -0.418-0.30t - 

 WEI_M2 AIK 95.0 -0.19-0.72 AIK -0.418 - 

 WEI_M3 AIK, BFI 91.3 -0.19-0.58 AIK +0.55BFI -0.418 - 

 WEI_M4 AIK, BFI, ET, λ 87.9 -0.19-0.39 AIK +0.61BFI-0.54ET -0.418+0.27λ - 

AM7 PIII_M0 - 155.0 0.43 0.219 0.007 

 PIII_M1 t 136.8 0.43-0.59t 0.219+0.19t 0.007 

 PIII_M2 AIK 135.7 0.43-0.76AIK 0.219 0.007 

 PIII_M3 AIK, BFI 132.4 0.43-0.65AIK +0.48BFI 0.219 0.007 

 PIII_M4 AIK, BFI, AIET, λ, P 127.5 0.43-0.62AIK +0.57BFI-0.60AIET 0.219-0.32λ-0.30 AIK +0.21P 0.007 

AM15 PIII_M0 - 203.5 0.83 0.105 0.069 

 PIII_M1 t 188.0 0.83-0.46t 0.105+0.208t 0.069 

 PIII_M2 AIK 184.2 0.83-0.75AIK 0.105 0.069 

 PIII_M3 AIK, BFI 180.6 0.83-0.65AIK +0.43BFI 0.105 0.069 

 PIII_M4 AIK, BFI, λ, K 170.4 0.83-0.70AIK +0.42BFI 0.105-0.36λ-0.71 AIK -0.43K 0.069 

AM30 GA_M0 - 232.3 1.09 -0.133 - 

 GA_M1 t 225.5 1.09-0.32t -0.133 - 

 GA_M2 AIK 217.4 1.09-0.59AIK -0.133 - 

 GA_M3 AIK, BFI 213.7 1.09-0.5AIK +0.32BFI -0.133 - 

 GA_M4 AIK, BFI, AIT 211.1 1.09-0.4AIK+0.32BFI -0.34AIT -0.133 - 

 647 
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Table 6. The summary of frequency analysis for four annual low flow series of Xianyang. 650 

Series Model codes Optimal variable AIC 
Distribution parameters 

 1ln    2ln   

AM1 GA_M0 - 222.3 1.0 -0.118 

 GA_M1 t 209.9 1.0-0.44t -0.118 

 GA_M2 K 210.7 1.0+0.4K -0.118 

 GA_M3 K, T 204.3 1.0+0.37K-0.38T -0.118 

 GA_M4 K, T, BFI, λ 203.2 1.0+0.33K-0.32T+0.27BFI -0.118-0.17 λ 

AM7 GA_M0 - 240.1 1.17 -0.139 

 GA_M1 t 227.9 1.17-0.42t -0.139 

 GA_M2 AIET 228.4 1.17-0.45 AIET -0.139 

 GA_M3 AIET, K 223.7 1.17-0.38 AIET +0.31K -0.139 

 GA_M4 AIET, K, BFI, λ 221.7 1.17-0.31 AIET +0.3K+0.28BFI -0.139-0.2 λ 

AM15 GA_M0 - 265.3 1.39 -0.139 

 GA_M1 t 253.4 1.39-0.43t -0.139 

 GA_M2 AIET 251.0 1.39-0.49 AIET -0.139 

 GA_M3 AIET, K 249.2 1.39-0.45AIET +0.24K -0.139 

 GA_M4 AIET, K, BFI, λ 246.6 1.39-0.36AIET +0.23K+0.32BFI -0.139-0.21 λ 

AM30 GA_M0 - 285.8 1.59 -0.184 

 GA_M1 t 270.1 1.59-0.48t -0.184 

 GA_M2 T 270.1 1.59-0.5T -0.184 

 GA_M3 T, P 267.1 1.59-0.34T+0.32P -0.184 

 GA_M4 T, P, BFI, K 265.4 1.59-0.33T+0.27P+0.22BFI+0.18K -0.184 
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